Red light’s many ways of working

Don’t discount the indirect effect of red and near infrared light.

I’ve had a number of queries lately about the importance of penetration of red and near infrared light into the brain. The questions stem from an assumption that red and near lights will only be effective if they act directly onto the cell. This assumption isn’t correct. Red light doesn’t rely on just one method to be effective.

Continue reading “Red light’s many ways of working”

Transcranial lights are the way to go.

Here’s a new journal article from the Journal of Alzheimer’s Disease. I’m a co-author, but don’t let that get in the way.

This article looks at the animal and clinical evidence for the use of transcranial and intracranial red and near infrared light devices. There is a lot of detailed information, including and in-depth description of the effect of transcranial red and near infrared lights in people with Parkinson’s disease.

As for which is best – intracranial or transcranial? The verdict is that neither is best on its own. The best is having both working together. It makes sense, having light shining from inside and outside the brain.

Alas, you might be waiting a while before you get access to an intracranial light implant (think DBS with a 670nm LED light), but you can use transcranial lights right now. You can make your own (instructions are here) or look at the Duo Coronet (link is here) .

Meanwhile, have a read…

Reference

Johnstone DM, Hamilton C, Gordon LC, Moro C, Torres N, Nicklason F, Stone J, Benabid AL, Mitrofanis J. Exploring the Use of Intracranial and Extracranial (Remote) Photobiomodulation Devices in Parkinson’s Disease: A Comparison of Direct and Indirect Systemic Stimulations. J Alzheimers Dis. 2021;83(4):1399-1413. doi: 10.3233/JAD-210052. PMID: 33843683.

Mitochondria have a social-life!

The discoveries about mitochondria continue to grow.

A while back, it became clear that many neurodegenerative diseases, especially Parkinson’s and Alzheimer’s, resulted from the cell batteries, the mitochondria, failing to properly power up the cell. This results in the cell being unable to do its job, for example making dopamine. It also results in the early death of the cell.

In 2019 came the stunning news that mitochondria are nomadic. They pop out of cells, plunge into the bloodstream and whizz around, then get out, metaphorically towel themselves dry and pop back into a different cell – possibly in a completely different part of the body.

This ability raised the question of what controls the mitochondrial migration. There must be some signalling system making this happen. One has visions of King Mito barking out orders to mitochondrial minions, who scurry around with their clipboards and spreadsheets…

The signalling system is the next big thing for scientists to understand. It offers vast opportunities for potential treatments and prevention strategies.

Now comes the news that mitochondria act like social creatures. The cosy up to each other, fuse together, split apart, and appear to communicate with each other. Absolutely fascinating!

Here’s a link to a wonderful article in Qantamagazine. It describes very beautifully the implication of a review paper by Martin Picard and Carmen Sandi, who were the first to describe this new feature of mitochondrial behaviour.

Reference:

Martin Picard, Carmen Sandi,The social nature of mitochondria: Implications for human health,
Neuroscience & Biobehavioral Reviews, Volume 120,
2021,Pages 595-610,ISSN 0149-7634,
https://doi.org/10.1016/j.neubiorev.2020.04.017.

Exercise and sleep in Parkinson’s

Hot off the research press is a journal article with a self-explanatory title: Effects of exercise on sleep in neurodegenerative disease.

It starts by summarising the main things that affect sleep in people with Parkinson’s, Alzheimer’s and other neurodegenerative diseases as being:

  1. damage to the sleep-wake system in the brain, that affects the circadian rhythm and disrupts normal sleeping and waking patterns; and
  2. “secondary mechanisms” which include a raft of things like medication side effects, having to get up to the toilet during the night, poor sleep “hygiene”, sleep-related breathing disorders, and the environment in which you try to sleep.
Continue reading “Exercise and sleep in Parkinson’s”