The Beginning

Constant knee pain makes it hard to be active, so in mid 2015, I did a lot of sitting and reading. One of the books was Norman Doidge’s The Brain’s Way of Healing.

Chapter 4 covered the effect of red and near infrared light on the brain and spinal cord, and there were some remarkable stories told. In passing, Doidge mentioned the positive effect of red and near infrared light on arthritic joints and damaged tendons.

I went hunting on Google Scholar and found some medical journal articles that Continue reading “The Beginning”

DIY Light Hat #2 – mark up

  1. Measure 160mm or 6.5 inches from the top of the bucket. And mark the measurement all around the bucket. You don’t need to be exact.
    Bucket first markings

  2. Mark places where you will be making holes. The first is at the top, about half way between the attachment of the handles. Only mark the holes circled below. (The other holes you will need for the two wavelength version, but not the one wavelength version.)
    Eliza 2 marking 2

3. Now mark holes lower down, on either side of the 160mm or 6.5 inch mark. You need to do these holes in two places, on opposite sides of the bucket. I do them under the handle attachments, as it helps keep me oriented. 

instruction 2 bucket 3


Have bucket, will travel…

While writing out the instructions to make light hats from buckets, I’ve been musing on the lives of the 2-wavelength light hats we have made since 2016.

What have the light hats been doing since we gave them away?

Quite a lot, it seems.

  • One went to Europe at the beginning of 2017, and floated down the Rhine, sampling the local beer.
  • Three went wandering in outback Australia. One came home but two are still out there, somewhere in the wilds of Western Australia.
  • One did a presentation to a Parkinson’s Support Group in February 2017. The participants were not impressed by the bucket’s attire but they were impressed by what its two wavelengths had been doing.
  • One is based in regional NSW but travels all over Australia, packed in a carry-on bag with socks and jocks stuffed inside the bucket next to the switch box.
  • The others are quietly working at home. They might be planning grand adventures – who knows.


DIY Light Hat #1 – a bucket

The ideal bucket:

  1. Plastic – not too thin as these can split when you cut them.

  2. Internal diameter at the top around 260mm (~10.5 inches). Definitely no less than 240mm (~9.5 inches) and no more than 300mm (~12inches).
    Bucket diameter

  3. Straight sides. Well, straight-ish sidesBucket straight sides

    Continue reading “DIY Light Hat #1 – a bucket”

Can red light stop brain cells from dying?

It’s been longer than intended since the blog was updated. During this time, a new article by John Mitrofanis was published in April 2017, called Why and how does light therapy offer neuroprotection in Parkinson’s disease? You can download it here: Link.

This is a great article with much detail explained with great clarity. Even better, it is only two pages.

It poses two critical questions:

  1. Can red/near infrared light protect brain cells from dying?
  2. If yes, then how does the light do that?

Continue reading “Can red light stop brain cells from dying?”

Multi wavelength idea

Early versions of our devices used LEDs of a single wavelength. Different wavelengths were tried over time, but in the early cases each device featured LEDs of a single type (and therefore wavelength).

John’s research planted the idea that multiple wavelengths could improve the outcomes being achieved, so we started making devices with two or more types of LED.

Parkinson’s Disease

Professor John Mitrofanis (University of Sydney) and Professor Alim Louis Benabid (CEA-LETI Grenoble University) have been research collaborators for some years now, investigating the effects of near infrared light on the dopamine-producing cells damaged by Parkinson’s Disease.

Benabid developed the original deep brain stimulation implant which has become a standard part of Parkinson’s Disease treatment. The collaboration between Benabid and Mitrofanis aims to develop a near infrared deep brain implant for Parkinson’s Disease. With large financial support from bodies such as the Michael J Fox Foundation, Benabid and Mitrofanis have shown that direct exposure to near infrared light stimulates dopamine-producing neurones to resume normal function, develop new connections and, most excitingly, to create new dopamine-producing cells. Their careful research has led to the development of a near infrared brain implant, soon to be used in clinical trials in France.

Their research team showed very clearly that near infrared light not only has a direct effect on Parkinson’s Disease symptoms, it also has an indirect effect. The helmet study elegantly showed that mice with chemically induced Parkinson’s, with only their bodies (not their heads) exposed to near infrared light improved in mobility and function. This has led the researchers to propose that the indirect effect of near infrared light is most likely transported by the immune cells in the blood stream. Clearly the indirect effect is not as potent as the direct effect, hence their research focus on the deep brain light implant.

In late 2015, our volunteers started “playing” with trans-cranial near infrared light, on the basis that it is able to penetrate through the skin and skull, it is non-invasive (no brain surgery) and it is safe. Our group’s work was not official medical research, but came from the interest of individuals in the rapidly evolving research into the effects of near infrared light on mitochondrial function, and the implications for neurodegenerative disorders.

The test case was a man in his mid seventies with a 7 year history of Parkinson’s Disease. Using 670nm LED strip, a “light hat” was fashioned, and used once daily for 20 minutes. Within a few months of daily light use, his symptoms had improved to the extent that his treating specialist suggested that other patients try it out. The group contacted Prof John Mitrofanis at the University of Sydney; he was interested and supportive, keen to see how the patients fared with light hats. He provided research findings that enabled the light hats to be improved, and he is writing up for publication some of the earliest case studies.

The light hats were made by the volunteers in the group and given to patients at no cost to the patients. As more people with Parkinson’s Disease and other neurodegenerative disorders joined in, it became more important to the group that the gift of light hats was continued.

To this end, a not-for profit association is being established and it will seek charity status.  The plan is to continue to make light hats available to patients through this organisation and to promote formal research into trans-cranial near infrared light for neurodegenerative disorders. Other volunteers are planning to do something similar in France.

Recent Publications by John Mitrofanis