Wavelengths

I had an interesting query today regarding the penetration of red and near infrared light into the body.

Question:

Does the penetration of red and near infrared light increase as the wavelength increases?

Answer:

Alas, no. The human body isn’t going to make life that easy for us!

Penetration studies have shown that 810 nanometres (written as 810nm) has the best ability to penetrate through the skin and into the body tissues.

There are some wavelengths in the red and near infrared spectrum that hardly penetrate at all, while others are better. 810nm is the best.

810nm is in the near infrared range. Because it is at the very edge of our ability to see, an 810nm light looks very pale.

Visible red 670nm is pretty good, but not as good as 810nm. However, when the 670nm wavelength reaches the cell, it is highly efficient at getting the cell batteries (mitochondria) to recharge and kickstart the cell.

Thanks To Steve Harvey on Unsplash for the great photo from Nottingham.

Magnificent mitochondria

Thomas Ryan and David Tumbarello, two British researchers, published a very interesting two-page review article due to be published in September 2021, but made available early.

It seems that mitochondria, the batteries in our cells, aren’t merely being driven by other, more high-status, parts of the cell. It looks like the mitochondria themselves might be in the driver’s seat, at least for some aspects of their activity. We should take more notice of them.

Continue reading “Magnificent mitochondria”

Mitochondria & Alzheimer’s

Alzheimer’s disease researchers have had to do a complete revision of thinking. For decades, the focus has been on getting rid of an abnormal protein, called amyloid, that plonks itself  in the brains of people with Alzheimer’s.

It was a reasonable hypothesis. Amyloid and Alzheimer’s seem to go together, so it seemed logical that in getting rid of amyloid proteins, Alzheimer’s would be cured.

Billions of dollars later, and despite lots of trials with amyloid-chewing drugs, it seems that amyloid is not the culprit.

Q: So what is the culprit?
A: Lots of things, especially mitochondria, the batteries that power our cells.

It’s not a surprise that miserable mitochondria are heavily involved in Alzheimer’s. More and more evidence is showing that moping mitochondria appear in many different diseases. It seems that cell battery management is critical, which makes a lot of sense.

The number of articles linking Alzheimer’s and mitochondria are increasing, and the hope is to find pharmaceutical solutions. That’s good, but there is a solution already in place. And one without side effects.

Photobiomodulation acts on the cell mitochondria, the cell batteries, and boosts the cell activity, stimulates the cell nucleus to start making new cells, opens up the blood vessels and stimulates the blood vessels to sprout more branches. We know from research, case studies and observations of people with Alzheimer’s disease that red and near infrared transcranial lights used daily can improve memory, judgement, attention and concentration, mood, apathy, sleep quality, fatigue, not to mention increasing enjoyment of life.

It would be so good if some of those billions of dollars for Alzheimer’s research would include more work on photobiomodulation.

References:
1. Stojakovic, A., Trushin, S., Sheu, A. et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer’s disease pathology and cognition in APP/PS1 female mice. Commun Biol 4, 61 (2021). https://doi.org/10.1038/s42003-020-01584-y Link.
2. Bell, Simon M.; Barnes, Katy; De Marco, Matteo; Shaw, Pamela J.; Ferraiuolo, Laura; Blackburn, Daniel J.; Venneri, Annalena; Mortiboys, Heather. 2021. “Mitochondrial Dysfunction in Alzheimer’s Disease: A Biomarker of the Future?” Biomedicines 9, no. 1: 63. Link

Thanks to Mika Baumeister on Unsplash for the wonderful image of a battery.

Water and light…

In the last blog post, I told you about an excellent article called How and why does photobiomodulation change brain activity.

An ardent reader would know that I tend to wax lyrical about the way that red and near infrared light works directly and indirectly on the cell batteries, the mitochondria. The mitochondria contain special proteins that are able to respond to the light pulse. Some of these proteins are quite famous, like cytochrome c oxidase, which has been well studied and probably has its own fan club.

But guess what. Even if there is no cytochrome c oxidase present, mitochondria still respond to light.

Continue reading “Water and light…”

The Brain Orchestra

I’ve been reading a journal article by Professors John Mitrofanis and Luke Henderson of the University of Sydney.

The title says it all: How and why does photobiomodulation change brain activity?

Continue reading “The Brain Orchestra”